

Welcome to the Reliable IBR Integration and Milestone 3 of FERC Order 901 NERC Industry Engagement Workshop – Day 1

Wi-Fi: Renaissance_conference Passcode: NERC2025

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Safety Briefing

Wi-Fi: Renaissance_conference Passcode: NERC2025

NERC Antitrust Compliance Guidelines and Commission Staff Disclaimer

Wi-Fi: Renaissance_conference Passcode: NERC2025

RELIABILITY CORPORATION

Opening Keynote

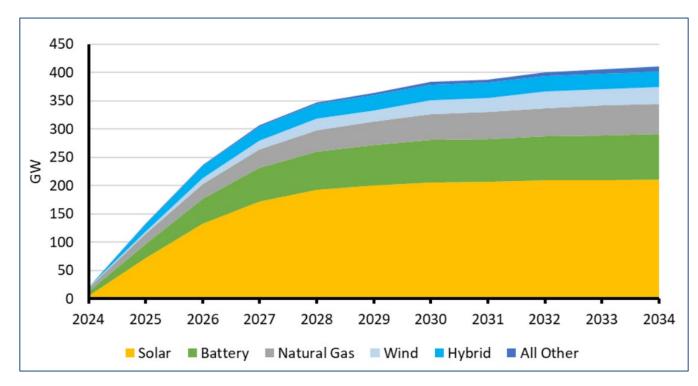
Jim Robb President and CEO (NERC) NERC Industry Engagement Workshop January 15, 2025

Opening Remarks

Mark Lauby Senior Vice President and Chief Engineer (NERC) NERC Industry Engagement Workshop January 15, 2025

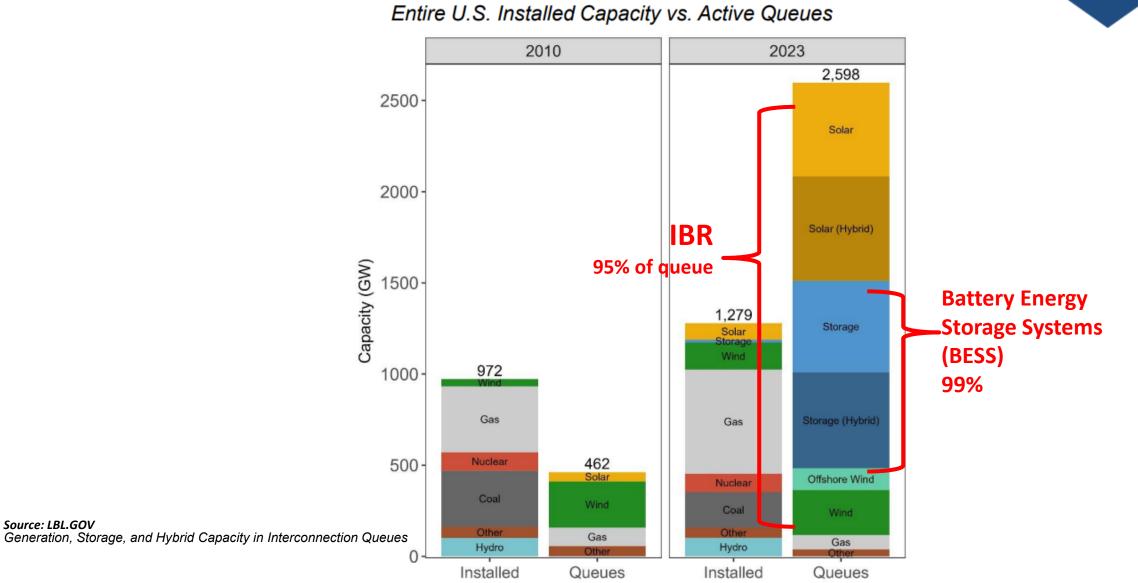
Evolution of Grid Characteristics and Modeling Needs with Changing Resource Mix

Evan Mickelson, Power Systems Engineer, NERC Aung Thant, Senior Engineer, NERC NERC Industry Engagement Workshop January 15, 2025



- Changing Resource Mix
- Disturbances & Recommendations

- NERC Long-Term Reliability Assessment (2024)
- Tier 1 and 2 Planned Resources Projected through 2034
- Over 300 GW nameplate of IBR



• ERCOT Fact Sheet & Monthly Generator Interconnection Status Report

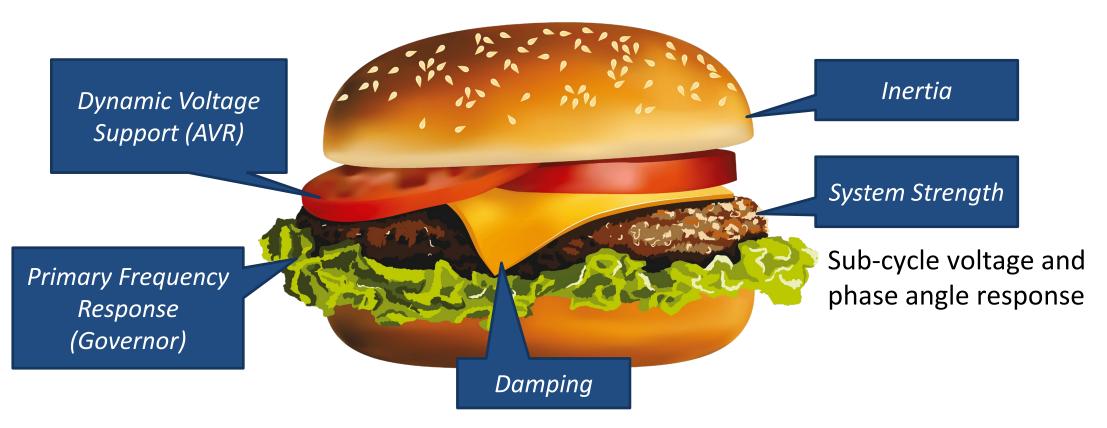
Generator Type	Operational Nameplate as of December 2024 (MW)	Maximum Penetration (%)
Energy Storage	10,017	-
Solar	29,148	44.17
Wind	39,470	69.15

North American IBR Outlook

Source: LBL.GOV

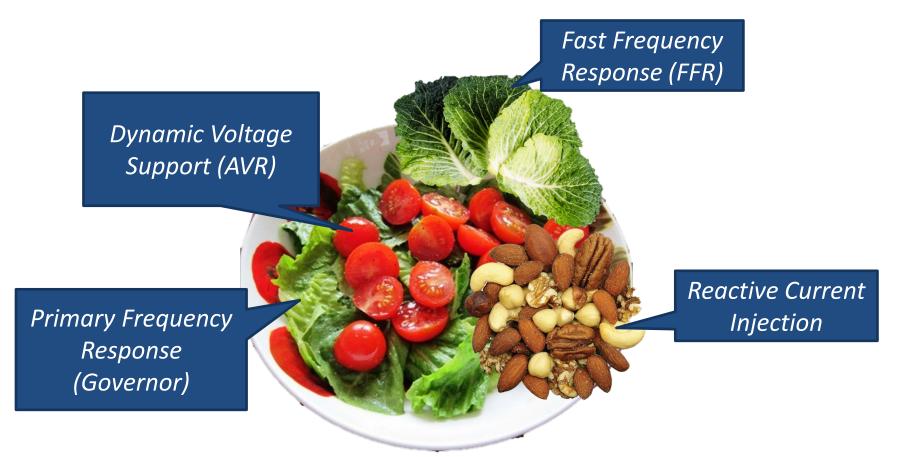
Current:

- Primary Frequency Response (PFR)
- Fast Frequency Response (FFR)
- Transient and Dynamic Voltage Support
 - Point of Interconnection Voltage Control
 - Reactive current injection
 - Reactive priority


Future:

- More FFR
- Near instantaneous voltage and frequency support (i.e., Grid Forming*)

*https://www.nerc.com/comm/RSTC_Reliability_Guidelines/White_Paper_GFM_Functional_Specification.pdf



Providing essential services without explicit requirements

Providing some essential services when explicitly required

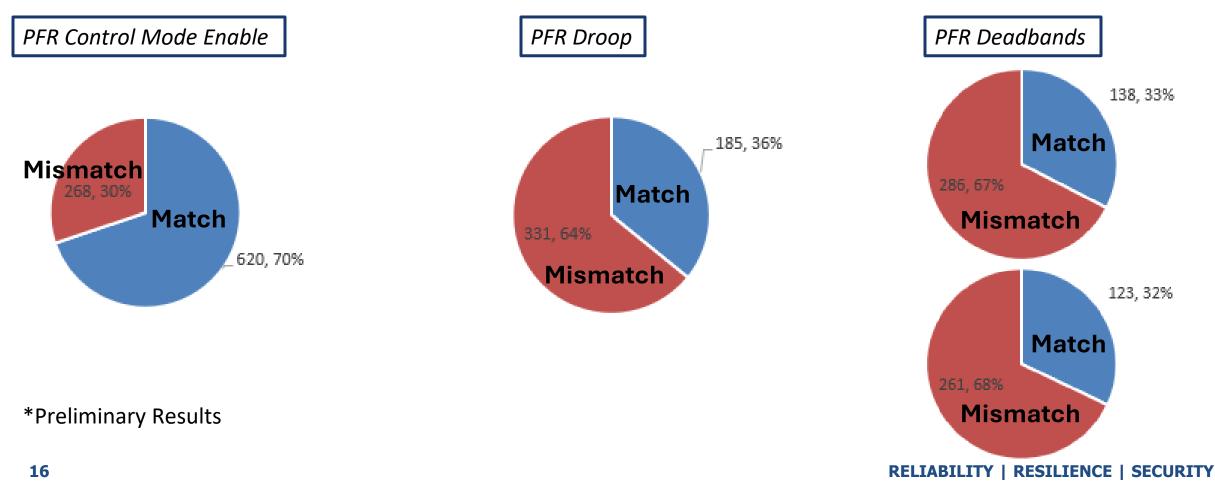
NERC Disturbance Reports

andle Wind

- Different mechanism and effect than conventional generation trips
 - Full/partial outage of real power
 - Some return to full/partial real power after some amount of seconds
 - Inability to recreate in positive sequence phasor domain

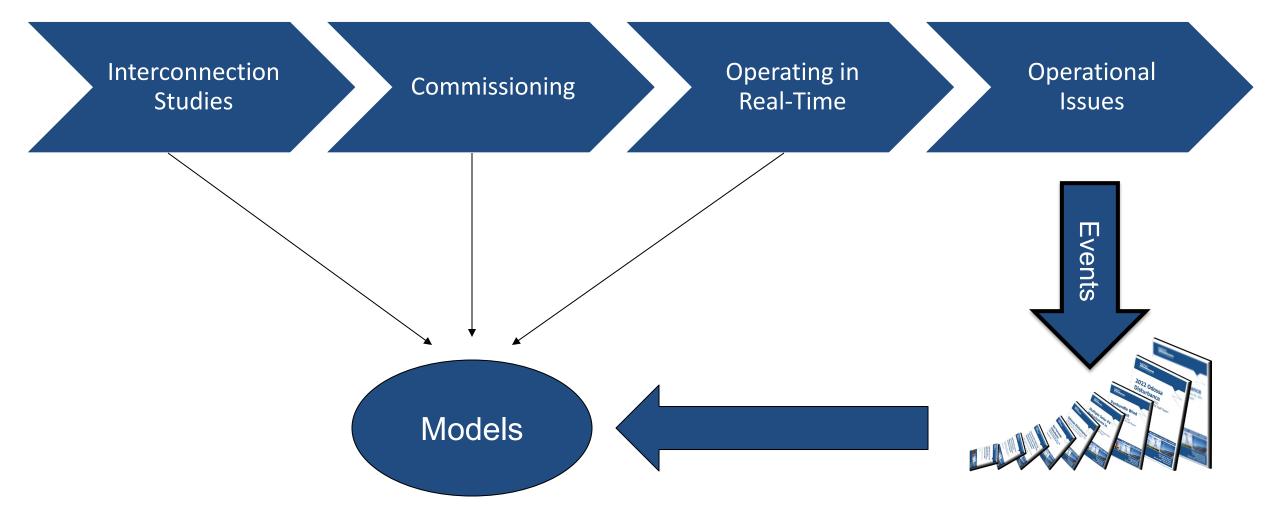
Odessa Modeling Deficiencies

Can the models recreate the cause of reduction?


Table 3.1: Solar PV Trip	pping and Modeling Capabilit	ies an	d Practic	es				
Cause of Reduction	Can Be Accurately Modeled in Positive Sequence Simulations?	Can Be Accurately Modeled in EMT Simulations?			n			
Inverter Instantaneous AC Overcurrent	No	Yes			Tak	ble 3.4: Review of Solar PV Facilit	loc	
Passive Anti-Islanding (Phase Jump)	Yes ^a	Yes			Tab	See 3.4: Review of Solar PV Facilit	Positive	
Inverter Instantaneous AC Overvoltage	No	Yes	Facility ID	Reduction [MW]		Cause of Reduction	Sequence Model Capable?	
Inverter DC Bus Voltage Unbalance	No	Yes	Plant B	133	Inverter p	hase jump (passive anti-islanding) tripping.	Unknown*	υ
Feeder Underfrequency	No ^b	No ^c	Plant C	56	Inverter p	hase jump (passive anti-islanding) tripping.	Unknown	U
Incorrect Ride-Through Configuration	Yes	Yes	Plant E	159	Inverter a	c overvoltage tripping.	Unknown*	U
Plant Controller Interactions	Yes ^d	Yes ^e	Plant U	136	Inverter a	c overvoltage tripping; feeder	Unknown	Ur
Momentary Cessation	Yes	Yes		130	underfreq	uency tripping.	Onknown	
Inverter Overfrequency	No ^b	Yes	Plant F	46	Unknown.		Unknown	U
PLL Loss of Synchronism	No	Yes	Plant I	196	Inverter p	hase jump (passive anti-islanding) tripping.	Unknown	Ur
Feeder AC Overvoltage	Yes ^f	Yes	Plant J	106	Inverter d	c voltage imbalance tripping.	Unknown	Ur
Inverter Underfrequency	No ^b	Yes	Plants K + L	130	Momenta	ry cessation/inverter power supply failure.	Unknown	Ur
			Plant M	146		c voltage imbalance tripping; incorrect de through configuration.	Unknown	Ur
			Plant N	35	Unknown.		Unknown	Ur
			Plant O	15	Unknown.		Unknown	Un
			Plant P	10	Inverter a	c overcurrent tripping.	Unknown*	Un
								<u> </u>

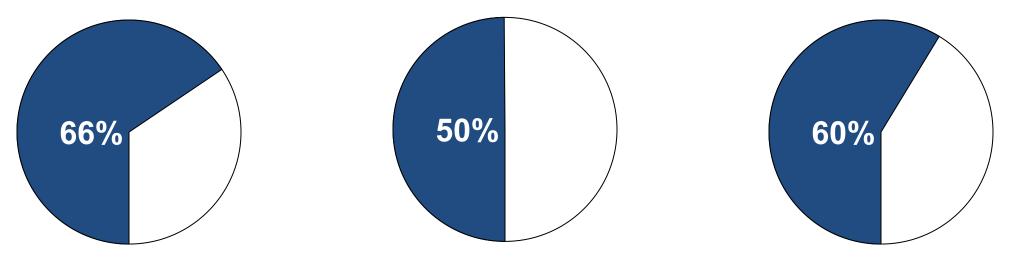
Do the models recreate the cause of reduction?

K + L	130	womentary cessation/inverter power supply failure.	OTIKITOWIT	OTIKHOWIT
Plant M	146	Inverter dc voltage imbalance tripping; incorrect inverter ride through configuration.	Unknown	Unknown
Plant N	35	Unknown.	Unknown	Unknown
Plant O	15	Unknown.	Unknown	Unknown
Plant P	10	Inverter ac overcurrent tripping.	Unknown*	Unknown
Plant Q	12	Inverter ac overcurrent tripping.	Unknown	Unknown
Plant R	261	Inverter ac overcurrent tripping.	Unknown*	Unknown
Plant S	94	Inverter dc voltage imbalance tripping.	Unknown*	Unknown
Plant T	176	Inverter ac overcurrent tripping; feeder underfrequency tripping.	Unknown*	Unknown



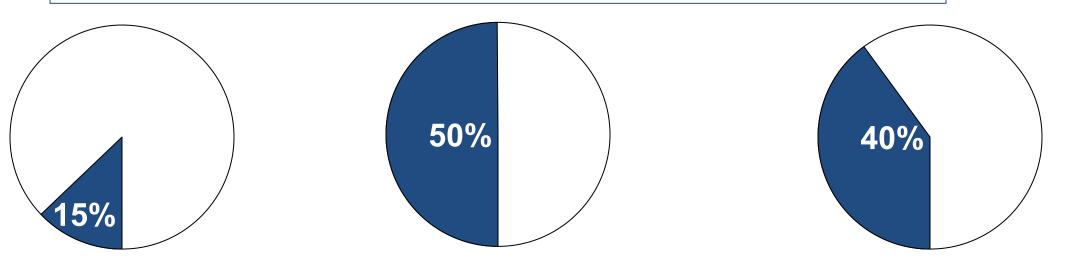
Models Reflecting Reported Controls and Parameters* – Primary Frequency Response (PFR)

Role of Models in Operational Issues



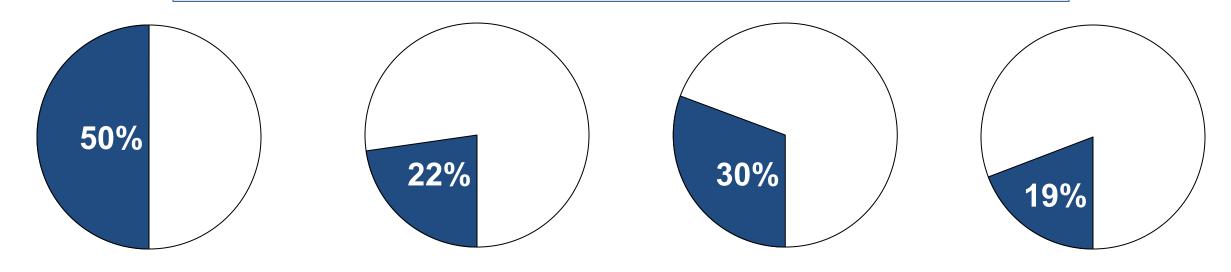
- EMT modeling requirements are critical moving forward
 - Modeling requirements will drive model improvements
- EMT model quality checks are necessary for model accuracy
 - Positive sequence benchmarking against EMT is necessary
- Model parameterization needs to match reality
 - Explicit verification of commissioned parameters against those studied during the interconnection process
- Forms of protections and controls that can trip the facility should be represented in models (ride-through studies)
 - These functions should also be tested for functionality and accuracy
 - Includes inverter and balance of plant protections

- Positive sequence models unable to ensure plant ride-through performance before real-time operations
- Strong and growing need for EMT modeling/studies moving forward
 - EMT models should be used for detailed and accurate ride through studies and for benchmarking of positive sequence models
- Changes to facilities require studies and approval by TP/PC *before* being made
 - Consider any change to electrical behavior (steady-state or dynamic) a "qualified change" per NERC FAC-002-4



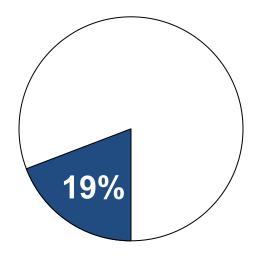
have publicly available model **submission** requirements have publicly available model **quality** requirements

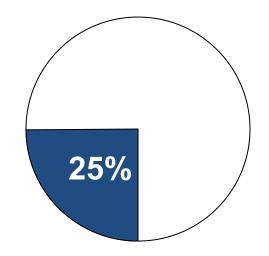
believe their modeling requirements align with NERC's Dynamic Modeling Recommendations



require the submission of equipment-specific, UDM PSPD generator models for interconnection studies allow the submission of equipment-specific, UDM PSPD generator models for interconnection studies

have the tools and personnel to effectively perform analysis with equipmentspecific, user-written models




require the submission of equipment- and sitespecific EMT generator models during the interconnection process perform EMT model verifications to determine if the model meets published requirements integrate EMT models into studies performed for generator interconnection procedures

have the tools and personnel to effectively perform EMT analysis

require generator model benchmarking reports that contain comparisons between all model types and actual equipment

have quantitative metrics to determine model accuracy

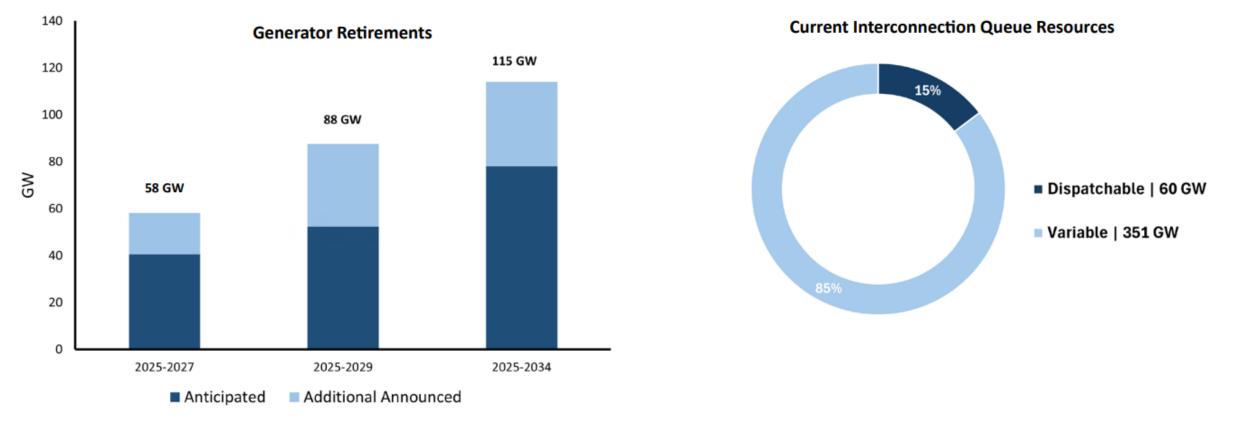
- There are demonstrated IBR performance and model quality issues
 - Shown through event analysis
 - There are also demonstrated solutions for these issues
 - "All models are wrong, but some are useful"
- Modeling needs change with the resource mix

Questions and Answers

Questions and Answers

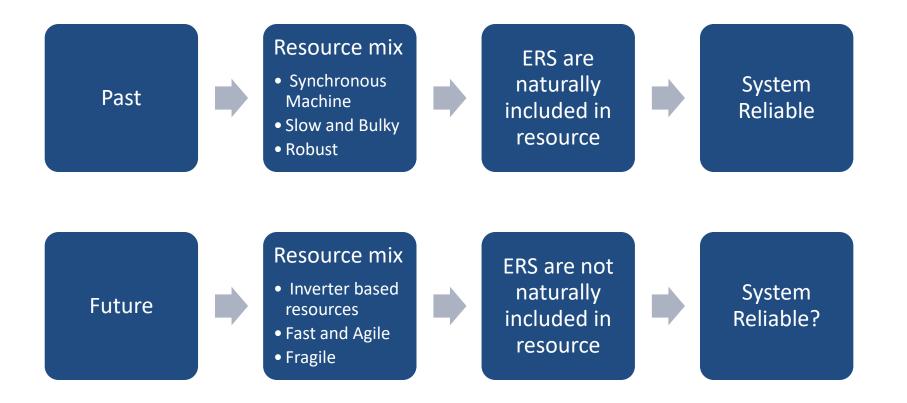
• Option 1

- Navigate in browser to <u>www.slido.com</u>
- Enter Event Code: NERC901
- Email address requested on entry
 - so we can respond to all questions!
- Option 2:
 - You may also scan this QR code to be auto-directed to the event



Essential Reliability Services to Meet the Needs of the Transforming Grid

Hasala Dharmawardena, Senior Engineer, NERC NERC Industry Engagement Workshop January 15, 2025

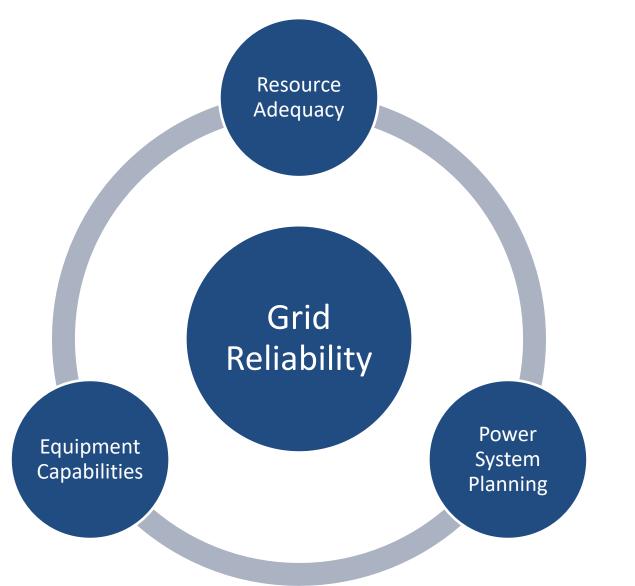


Background – Resource Adequacy

*NERC 2024 LTRA – Infographics NERC_LTRA_Infographic_2024.pdf

Intentionally identifying, measuring, and planning for sufficient Essential Reliability Services (ERS) in the future resource mix is critical to ensuring long term system reliability

ERS are Dynamic – A Periodic Assessment is Important


The BPS characteristics changes with time

The required type and amount of ERS changes with the BPS Characteristics

The mechanisms to account for ERS must also evolve

ERS Should be Included into the Planning Life Cycle

Ramping and Balancing

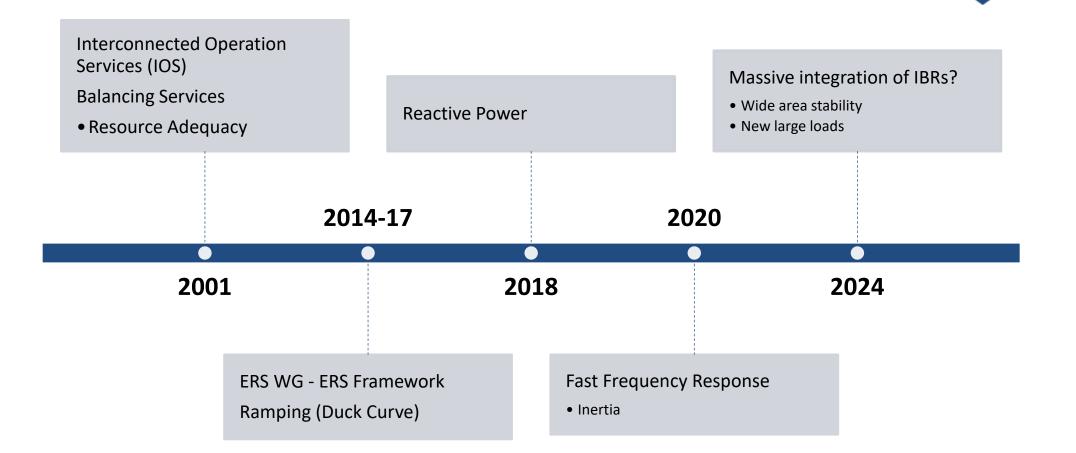
- Capability mandates for Equipment
 - Voltage (Reactive Power) Services (<u>FERC Order 827</u> 2016)
- Frequency (Primary Frequency Response) Services (FERC Order 824-2018)
- Standards
 - Long-term Planning
 - Transmission System Planning Performance Requirements (TPL-001-4)
 - Operational Planning and Real-time Operations
 - Resource Loss Protection Criteria of BAL-003 connects to ERS
 - IFRO* drives the frequency reserve requirements
 - Voltage and Reactive Control (Operations Planning) VAR-001-5

Synchronous Inertial Response(SIR) at an Interconnection Level*

Initial Frequency Deviation Following Largest Contingency

Frequency Response at Interconnection Level *

Overall System Reactive Performance


System Strength- Short Circuit Level

Reactive Capability on the System

NERC Essential Reliability Services Task
 Force Measures Framework Report – 2015

<u>*M-4/M-4.1 Interconnection Frequency Response/Inertia and Rate-of-Change-of-Frequency</u>

- Review of Essential Reliability Services Framework to meet the challenges of the transforming grid
 - Enhance Long Term Reliability Assessments
 - Enhance State of Reliability Report

To share your work or ideas for collaboration with us - hasala.dharmawardena@nerc.net

Questions and Answers

Questions and Answers

• Option 1

- Navigate in browser to <u>www.slido.com</u>
- Enter Event Code: NERC901
- Email address requested on entry
 - so we can respond to all questions!
- Option 2:
 - You may also scan this QR code to be auto-directed to the event

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Break 10:15 – 10:45 a.m.

RELIABILITY | RESILIENCE | SECURITY

Panel Discussion: Grid Stability Challenges and Services from Inverter-Based Resources (IBRs)

Moderator: JP Skeath, NERC –Manager, Engineering & Security Integration, NERC Todd Chwialkowski – EDF Renewables Julia Matevosyan – ESIG Deepak Ramasubramanian – EPRI Kyle Thomas – Elevate Energy Consulting Duncan Burt – Reactive Technologies

NERC

Industry Engagement Workshop Grid Stability Challenges and Services from Inverter-Based Resources

Agenda

- EDFR Introduction
- Generator Challenges
- Opportunities

Todd Chwialkowski Dir., Transmission Regulatory & Compliance

January 15, 2025

Overview

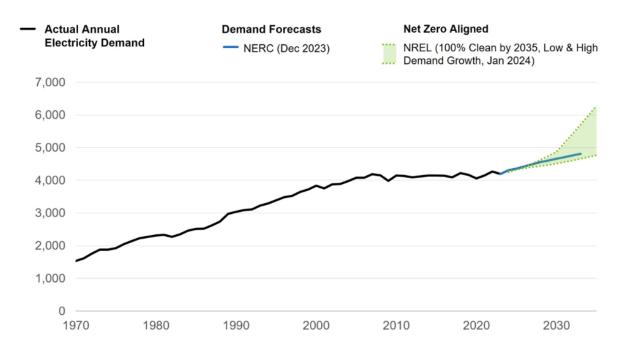
EDF Renewables North America is a project developer, owner, and operator with endto-end solutions for every market...

As developer, owner and operator of one of the largest renewable energy portfolios and second largest project pipeline on the continent, EDF Renewables is active in every market across North America.

With our history of innovation, and deep experience developing and operating renewable energy assets, we bring a full-suite of solutions for grid-scale, distribution-scale, asset optimization and onsite energy.

Our outstanding capabilities allow us to utilize our in-house experts, providing maximal efficiency and end-to-end oversight of any size of energy project.

...with the capabilities, financial strength and global footprint to help you secure your energy future.


EDF Renewables North America 16 GW Grid-Scale developed Power 13 GW service contracts Distribution-Scale Power 44 GW pipeline Onsite $\widehat{\mathbb{C}}$ **Solutions** 35+ years experience 1,650+ Asset $\mathbf{\overline{11}}$ Optimization employees as of 12/31/22

Energy Demand & Study Cost Allocation

Figure 1: U.S. Electricity Demand (1970-2035)

Electricity Demand (TWh)

Why is this important to point out? → Effective collaboration = Success with our goals!

DOE: Clean Energy Resources to Meet Data Center Electricity Demand (Aug. 12, 2024) https://www.energy.gov/policy/articles/clean-energy-resources-meet-data-center-electricity-demand#:~:text=The%20U.S.%20Department%20of%20Energy,doubling%20in%20current%20electricity%20demand

The U.S. Department of Energy (DOE) has been anticipating and planning for rising electricity demand underscored by the nationwide goal to reach net-zero emissions economy-wide by 2050. To reach this goal, we expect at least a doubling in current electricity demand.

Reliability Opportunities

To date, NERC and ERCOT have proposed *retroactive implementation* (applies to both current generation and future projects). ISOs / RTOs are utilizing various strategies in their implementation of the IEEE2800-2022 requirements.

Current IBRs (Legacy Generation Plants):

- P & Q Capability
- Frequency and Voltage Ride-Through Capability
- Improved Data Monitoring and Reporting (e.g., ERCOT NOGRR-245, NERC PRC-028-1)
- Basic Modeling

IBRs in Development (Future Generation Plants):

- Grid Support Services
- P & [increased] Q Capability
- Faster Response to Events
- Enhanced Frequency and Voltage Ride-Through Capability
- Continued Response Over Longer Periods Of Time Before Tripping
- Grid Forming vs. Grid Following
- Increased Accuracy With Modeling

Thank You

Contact:

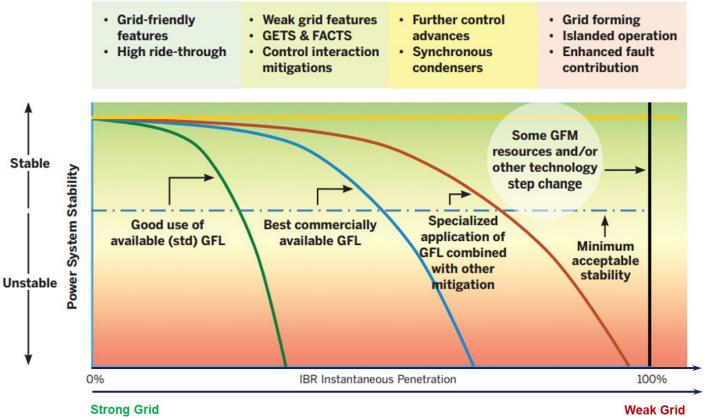
Todd.Chwialkowski@EDF-RE.com

hann I

NERC Panel: Grid Stability Challenges and Services from Inverter-Based Resources (IBRs)

Julia Matevosyan

Associate Director and Chief


ESIG

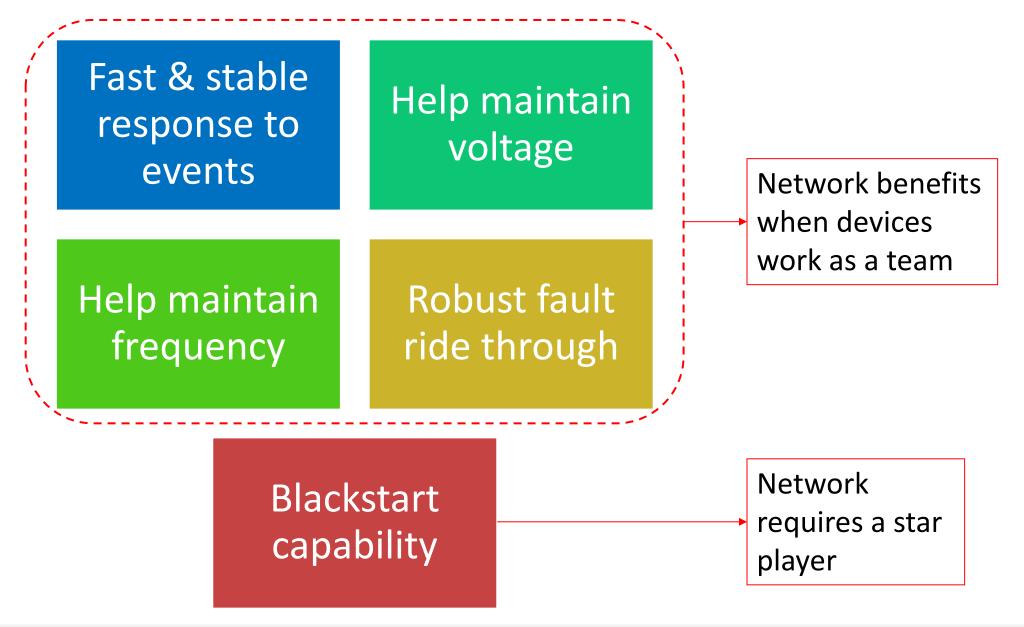
05/21/2024

©2022 ESIG. All rights Reserved.

Evolution of Grid Services from IBRs

- Majority of the inverters today are "grid-following"
- They read the voltage and frequency of the grid, lock onto that, and inject power aligned with that signal.
- That signal comes from synchronous generators.
- The further wind and solar generation pockets are from synchronous generation, the "weaker" the grid.
- The signal is then easily perturbed by power injection from wind and solar resources, making it hard for inverters to lock onto it correctly.
- This may lead to local instability issues.

Essential reliability services for future power networks


Together... Shaping the Future of Energy®

Deepak Ramasubramanian Senior Technical Leader dramasubramanian@epri.com

NERC IBR Technical Workshop 15th January 2025

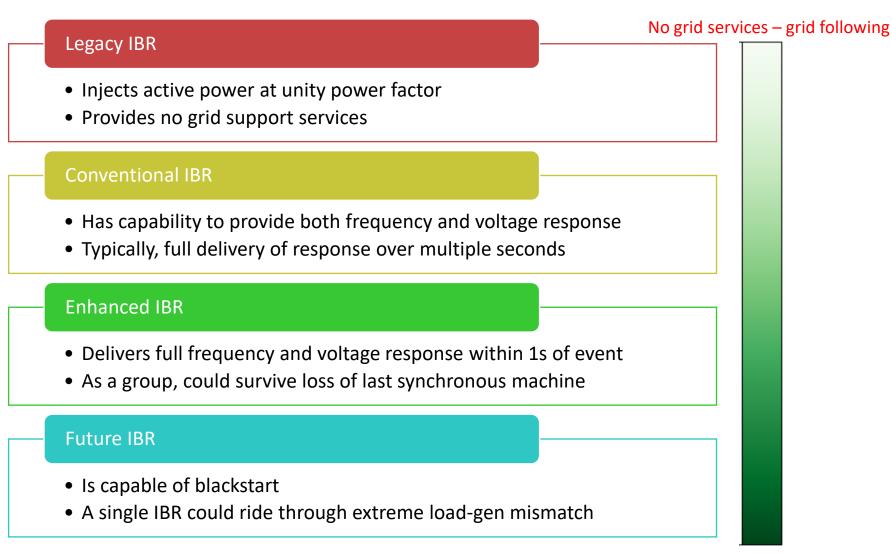
in X f www.epri.com © 2025 Electric Power Research Institute, Inc. All rights reserved.

Categories of services that IBRs can provide to network

EPRI

Services from IBRs mapped to needs of the system

Need of network	Service that IBR can provide
Synchronization	Synchronization torque/phase jump mitigation
	First swing mitigation
	Phase jump ride-through
	PLL Stability Support
Frequency Control	Frequency containment
	Inertial response/limiting RoCoF
	Frequency stabilization
	Frequency recovery
Voltage control	Voltage containment
	Mitigate voltage collapse
	Fault ride-through
	Mitigate unbalance and harmonics
Damping	Damp sub-synchronous oscillations (SSO)
	Damp super-synchronous oscillations
Protection	Detect and locate faults
Restoration	Black start
	Cold load pick up
	Island operation

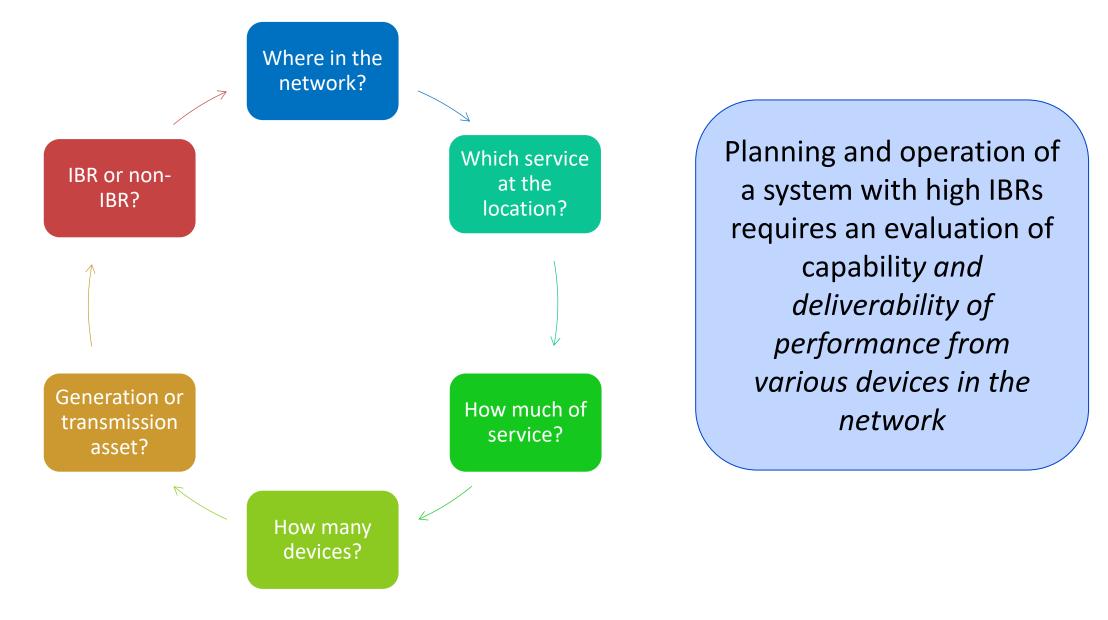

Points to note:

- Need to identify situations where the service is important/can be tested
- Not every service is required at all points in time

Table from [1]

[1] B. Chaudhuri, D. Ramasubramanian, J. Matevosyan, M. O'Malley, N. Miller, T. Green and X. Zhou, "Rebalancing Needs and Services for Future Grids: System Needs and Service Provisions With Increasing Shares of Inverter-Based Resources," in IEEE Power and Energy Magazine, vol. 22, no. 2, pp. 30-41, March-April 2024

Technical requirements and utilization of capability



All grid services – grid forming

IBR – Inverter based resource

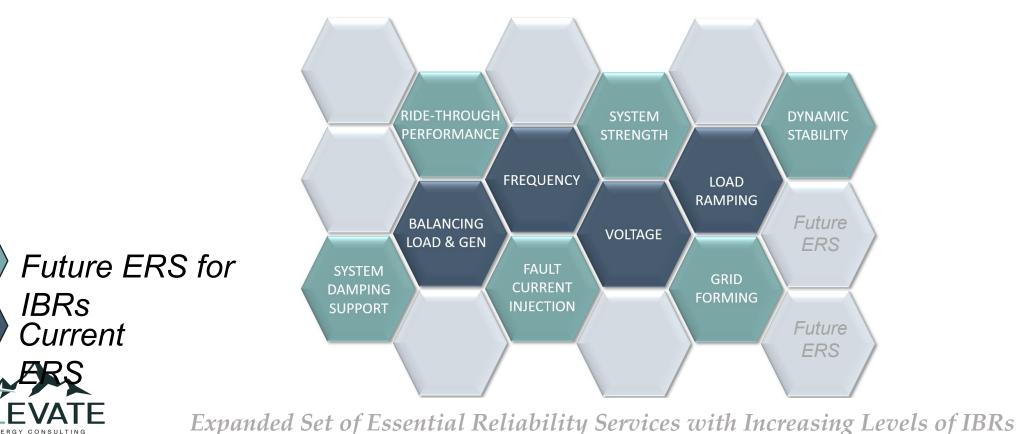
Questions that can be asked for requisite services

EPG

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2025 Electric Power Research Institute, Inc. All rights reserved.


NERC Panel: Grid Stability Challenges and Services from Inverter-Based Resources (IBRs)

Kyle Thomas, PE

January 15, 2025

Essential Reliability Services (ERS) Going Forward

- The grid today relies on the physical, inherent properties of synchronous generators to maintain reliability, which go beyond the current defined ERS
- IBRs do not have these same inherent properties, so additional ERS may need to be defined to ensure that these are required and implemented by IBRs in their software & controls

Essential Reliability Services (ERS) Going Forward

- NERC can help ensure that the industry is collectively ensuring an *adequate level of reliability* by assessing and requiring that there is an adequate amount of all the expanded, necessary ERS from IBRs
- To do this, we need accurate and validated models from all resources during the interconnection process to allow us to run these ERS assessments under high IBR scenarios
 - Must have this clearly defined in advance of interconnections so that right services, models, studies, and equipment can have requirements in place and implemented on the system

kyle.thomas@elevate.energy

Grid Stability:

Challenges and Services from IBRs

Solutions for a fast-evolving power grid

Reactive Technologies
Duncan Burt

Chief Strategy Officer duncanb@reactive-technologies.com We enable transmission and distribution grid operators to measure grid inertia and system strength to accelerate the transition to a low-carbon grid, safer and faster.

To Tackle Global Grid Challenges

"As the penetration of wind and solar on the system increases, operation of the system becomes significantly more complex. The **power system is being operated closer to its known limits** more frequently, with increasingly variable and uncertain supply and demand, and **declines in system strength and inertia**."

NESO

"Zero carbon operation of the electricity system means a **fundamental change to how our system was designed to operate**; integrating newer technologies right across the system... **using new smart digital systems** to manage and control the system in real-time."

"It is recommended that system operators perform **inertial measurements** to get an **accurate**, **real-time** view of inertia levels to replace guesswork and conservative estimates."

entsoe

"Decreasing levels of inertia – as a result of the large-scale integration of renewable sources – **pose long-term challenges to frequency stability of the transmission system, with possible impacts on the resilience of the future system**."

Observations and Mitigations

You wouldn't operate the grid without measuring and modelling voltage and current.

Today, it's crucial to measure inertia and system strength for the IBR grid of tomorrow.

Thank You!

Net Zero – Safer, Faster.

CONFIDENTIAL – All Rights Reserved © 2024. Reactive Technologies Limited/Finland Oy

• Option 1

- Navigate in browser to <u>www.slido.com</u>
- Enter Event Code: NERC901
- Email address requested on entry
 - so we can respond to all questions!
- Option 2:
 - You may also scan this QR code to be auto-directed to the event

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Lunch 12:00 – 1:00 p.m.

RELIABILITY | RESILIENCE | SECURITY

Panel Discussion: Best Practices on IBR Modeling and Validation

Moderator: Rich Bauer, Principal Engineer, Event Analysis, NERC Miguel Acosta – Vestas Chris Milan – Crestcura Sebastian Achilles – GE Vernova Larry Truong – TMEIC Rajni Burra – Terabase Energy

Moderated by

RELIABILITY | RESILIENCE | SECURITY

Interconnection Request

- └─→ Submit <u>Accurate</u> Model
 - └→ Study Model
 - └→ Construct

└→ Install Equipment Representative of Model

└ → Commission Test to validate Accurate Equipment Model

Interconnection Request

Submit <u>Accurate</u> Model
 ↓ Study Model
 ↓ Construct
 ↓ Install Equipment Representative of Model
 ↓ Commission Test to validate Accurate Equipment Model
 ↓ Changes? Differences?

Let's talk about how do we achieve that Perfect World and what are some Best Practices for how to accomplish that?

• Option 1

- Navigate in browser to <u>www.slido.com</u>
- Enter Event Code: NERC901
- Email address requested on entry
 - so we can respond to all questions!
- Option 2:
 - You may also scan this QR code to be auto-directed to the event

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Break 2:30 – 2:45 p.m.

RELIABILITY | RESILIENCE | SECURITY

Panel Discussion: IBR Modeling Challenges

Moderator: Alex Shattuck, ESIG Todd Chwialkowski – EDF Renewables Katie Iversen – S Power Mohamed Khabit – Invenergy Zhi Qu – EPE Consulting Farhad Yahyaie – Elevate Energy Consulting David Marshall – Southern Company

RELIABILITY | RESILIENCE | SECURITY

Questions and Answers

• Option 1

- Navigate in browser to <u>www.slido.com</u>
- Enter Event Code: NERC901
- Email address requested on entry
 - so we can respond to all questions!
- Option 2:
 - You may also scan this QR code to be auto-directed to the event

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Closing Remarks

Latrice Harkness, Director, Engineering, NERC NERC Industry Engagement Workshop January 15, 2025

RELIABILITY | RESILIENCE | SECURITY