# NERC

# **TADS Section 1600 Update**

Marie Golson, Performance Analysis Reliability and Security Technical Committee Meeting September 12, 2024





#### **Proposed Section 1600 Enhancements**

- Load loss data resulting from a transmission system outage
- Geographical data for TADS elements
- Equipment sub-cause codes



| Date           | Action                                                                                                                 |
|----------------|------------------------------------------------------------------------------------------------------------------------|
| July 2024      | Transmission Availability Data System (TADS) User Group endorsed request for proposed TADS Section 1600 modifications. |
| August 2024    | Performance Analysis Subcommittee endorsed request proposed<br>TADS Section 1600 modifications.                        |
| August 2024    | Begin FERC 21-day review period (9/6 – 9/27).                                                                          |
| September 2024 | Provide RSTC information about the request.<br>Begin 45-day posting period for public comment (10/1 – 11/15).          |
| November 2024  | NERC with input from TADS User Group and PAS to complete response to public comments.                                  |
| January 2025   | Send request for proposed TADS Section 1600 modifications to NERC Board of Trustees for review.                        |
| February 2025  | Target NERC Board of Trustees February Meeting to seek approval for proposed modifications.                            |

## Targeting 2026 to Go Live



## Description

 Data collection of load loss resulting from transmission system outages

### Objective

- To improve the load loss component of the Severity Risk Index (SRI) which is used for the State of Reliability report and other analyses.
  - Currently, NERC uses load loss data voluntarily collected, and not representative of a given interconnection.
- To capture times when there is an operational break in continuously transmitted electrical energy to planned in-service points.





- **Criteria** Load loss data resulting from transmission system outages will be reported when **all** the following criteria are met:
  - Load previously served from a given Transmission Connection Point (TCP) is no longer being served because of the TADS outage, and
  - 2. Unserved load is not restored within 5 minutes, and
  - 3. The de-energized TCP has a deliverable capacity of 20 MWs or greater.

\*The demarcation where the BES transmission system interfaces with the non-BES transmission and/or distribution system.



| Proposed TADS Data Fields           |                                                                                                                                                                      |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Capacity at the TCP                 | Capacity at the TCP is the capacity at the transmission side where the BES transmission system interfaces with non-BES transmission and/or distribution system.      |  |  |  |
| Amount of Load Dropped              | The (actual or estimated) amount of Load Dropped (MWs) at time of outage minus redistributed load being served to alternate locations.                               |  |  |  |
| Method for Quantifying<br>Load Loss | Multiple Choice: SCADA System, Estimation, Peak Percentage, Customer Count, Other.                                                                                   |  |  |  |
| Load Loss Outage<br>Duration        | Load Loss Outage Duration (hhhh:mm) is the duration when load is dropped resulting from transmission system outages <u>until the load has</u> <u>been restored</u> . |  |  |  |
|                                     | This duration may be shorter than the outage duration if load is restored prior to the transmission equipment's restoration.                                         |  |  |  |
| Load Loss                           | Load Loss (MWhrs) is the (actual or estimated) amount of load lost multiplied by the duration of the outage.                                                         |  |  |  |
| Method for Ending<br>Duration       | Multiple Choice: Load restored at TCP, Load Restored at Alternate TCP(s),<br>Load Restored within Delivery Network, Load No Longer Exists, Other.                    |  |  |  |



7

## End of load loss resulting from transmission system outages

- Time when load is "available" to be served, or load is being served to the TCP:
  - De-energized transmission system equipment is restored, and load is available at the TCP, or
  - Load has been energized through an alternate means.





#### Description

 Geographical data will be added to the transmission system inventory database to identify the longitude and latitude coordinates of TADS elements.

### Objective

- To improve the accuracy of evaluating the extent of system outages.
  - Geographically associating localized events to assess the actual size and impact.



### Description

• Add an equipment sub-level cause code to enhance existing initiating and sustained equipment related cause codes.

### Objective

- To better understand the cause of transmission system outages.
- To track and trend outages due to equipment failures in more detail.
  - Recommend proactive measures to prevent outages.
  - Identify BES trends for the State of Reliability and other reports/studies.



## **Proposed Equipment Sub-Cause Codes**

## Current outage equipment failure related cause codes

Failed AC Circuit Equipment

Failed AC Substation Equipment

Failed AC/DC Terminal Equipment

Failed DC Circuit Equipment

Failed Protection System Equipment

#### **Proposed additional fields for Equipment Sub-Cause Codes**

| AC/DC Converter                                | Station DC Supply           |  |  |
|------------------------------------------------|-----------------------------|--|--|
| Communications System                          | Substation Conductor - Bar  |  |  |
| Conductor                                      | Substation Conductor - Line |  |  |
| Digital Relay                                  | Switch                      |  |  |
| Gas Breaker (manufacturer if available)        | Tower Structure             |  |  |
| Series Compensation<br>(Capacitors / reactors) | Transformer                 |  |  |
| Other                                          |                             |  |  |

One equipment sub-level code will be allowed per equipment cause code.



## **Questions and Answers**





## Steady State Example: No Load Loss

Example showing BES transmission equipment going to distribution equipment

- There are no outages and no-load loss
- All BES equipment is energized



Networked Distribution

- The Transmission Connection Points (TCPs) are the first disconnect switched from the BES bus, indicated by TCP-1 and TCP-2 (the disconnect switches are not shown).
- The TO may have SCADA visibility of the status of these TCPs (and/or the non-BES-breakers) but may or may not have control of the distribution system.





Example showing BES transmission equipment going to distribution equipment

- BES transmission equipment is de-energized
- Load loss due to a load drop  $\geq$  20 MWs and duration  $\geq$  5 mins.



- CB-BD is out for maintenance.
- Outage occurs on transmission Line 2 due to fault from a storm.
- To clear the fault CB-C and CB-D are opened, along with CB-BD, which results in no load being served at TCP-2.
- CB-FH mis-operated due to fault on Line 2 resulting in load loss.





## Load Loss Example Transmission Restoration

Example showing BES transmission equipment going to distribution equipment

- BES equipment is re-energized
- Initial load loss due to a load drop  $\geq$  20 MWs and duration  $\geq$  5 mins.
- Load restored at TCP



- Energy is available to TCP-2; through alternate transmission equipment, CB-BD.
- End of load loss initiating transmission outage.
- Distribution system is not energized; however, it is no longer a result of BES transmission system equipment.





## Load Loss Example Distribution Restoration

Example showing BES transmission equipment going to distribution equipment

- BES equipment is re-energized
- Initial load loss due to a load drop  $\geq$  20 MWs and duration  $\geq$  5 mins.
- Load restored at alternate TCP and within the network distribution



- Energy is available to distribution network. (CB-FH is now closed)
- End of load loss initiating transmission outage.
- Although original BES transmission system equipment remains out of service, load was energized via distribution network.





Outage ID Codes 0001-2024 and 0002-2024 are load loss examples because the MWs dropped were greater or equal to 20 MWs and the duration was 5 mins or greater, sustained.

Outage ID Code 0003-2024 is not a load loss example because although the MWs dropped is greater or equal to 20 MWs, the duration is less than or equal to 5 mins.

Outage ID Code and 0004-2024 is not a load loss example because although the duration is greater than or equal to 5 mins., the load dropped was less than 20 MWs.

| Outage<br>ID Code | Amount of<br>Load Dropped<br>(MWs) | Load Loss<br>Duration<br>(hhh:mm) | Estimated<br>Load Loss<br>(MWhrs) | Load Loss Outage                                |
|-------------------|------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------------|
| 0001-2024         | 25                                 | 0001:00                           | 25                                | Yes, <u>&gt;</u> 20 MWs and <u>&gt;</u> 5 mins. |
| 0002-2024         | 20                                 | 0002:00                           | 50                                | Yes, <u>&gt;</u> 20 MWs and <u>&gt;</u> 5 mins. |
| 0003-2024         | 25                                 | 0000:02                           | 0.83                              | No, <u>&gt;</u> 20 MWs but < 5 mins.            |
| 0004-2024         | 10                                 | 0002:00                           | 20                                | No, <u>&gt;</u> 5 mins. but < 20 MWs            |



2018-2023: 23% of TADS outages are due to equipment failure

• The equipment sub-cause codes will assist in understanding the type of equipment issues resulting in failures

#### **Example Uses**

- Easily identify equipment within the substation or out on transmission structures.
  - Identify where a majority of the outages emanate, thus where mitigation should focus
- Identify specific equipment type and manufacturers that are trending higher when compared to other equipment types/vendors.
  - To focus on targeted equipment types/manufacturers for proactive inspection/ replacement.
  - To investigate if it is a supply chain/design issue that could propagate across multiple entities.
- Identify equipment manufacturers that may have an increasing failure rate on the system (identifying end of life type time lines).
  - Higher failure rates by equipment type can be easily identified (e.g., compare vintage microprocessorbased relays to new designs or electromechanical relays to microprocessor-based relays).