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The Three Pillars of Accurate Modeling of DER for Transmission 

Planning Studies

I. Accurate Model 
Specification

• Aggregate generator in 
power flow case

• Generic or dynamic 
equivalent model in 
dynamic case

II. Accurate Model 
Integration

• Power flow case

• Dynamic case

III. Accurate Model 
Parameters

• Feeder aggregation/ 
equivalent impedances

• Split of legacy/ modern 
DER

• Partial Voltage Trip 
Parameters

➢ 2nd generation renewables 
models

➢ Aggregated DER (DER_A) 
model (3002015320) – public!

➢ Aggregated DER Model 
Integration (ADMI) Tool 
(3002014316)

➢ Feeder Aggregation Research 
(3002013500)

Research commenced in 2015 and continues over the next few years as joint project of programs P40.016 & P173A

(3002013500)

(3002015320)

http://www.epri.com/
https://www.epri.com/#/pages/product/000000003002015320/
https://www.epri.com/#/pages/product/000000003002014316/?lang=en
https://www.epri.com/#/pages/product/000000003002013500/
https://www.epri.com/#/pages/product/000000003002013500/
https://www.epri.com/#/pages/product/000000003002015320/
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How can DER be modeled for bulk power system planning studies?

http://www.epri.com/
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Block tripping of DERs is a concern to improved resiliency

How does a 

transmission 

planner get this 

visibility?

http://www.epri.com/
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The DER_A Model

How to find parameter values for the model? Present focus is on voltage thresholds. 

References: 

• EPRI (2019): The New Aggregated 

Distributed Energy Resources (der_a) Model 

for Transmission Planning Studies. 2019 

Update. White Paper. 3002015320. Electric 

Power Research Institute (EPRI). Palo Alto, 

CA. (Online)

• P. Pourbeik, “Proposal for der a model: 

memo issued to WECC REMTF, MVWG and 

EPRI P173.003,” (Online) 10/11/16 

(REVISED 11/16/16; 3/6/17; 3/15/17; 

3/28/17; 3/29/17; 3/31/17; 4/17/17; 10/5/17; 

11/9/17; 2/9/18; 2/15/18; 3/9/18; 7/17/18; 

8/29/18; 9/11/18) 2018.

http://www.epri.com/
https://www.epri.com/#/pages/product/000000003002015320/?lang=en-US
https://www.wecc.biz/Reliability/DER_A_Final.pdf
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Benchmarking of the DER_A model to ensure consistency of 

implementation…

▪ Representative results shown here for 
play-in voltage waveform (on the left) 
and fault and subsequent clearance (on 
top)

References: 

• EPRI (2019): The New Aggregated Distributed Energy Resources (der_a) Model for 

Transmission Planning Studies. 2019 Update. White Paper. 3002015320. Electric Power 

Research Institute (EPRI). Palo Alto, CA. (Online)

http://www.epri.com/
https://www.epri.com/#/pages/product/000000003002015320/?lang=en-US
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Line to neutral voltage profile of 8500 node feeder without any additional 

inverters and balanced loads

http://www.epri.com/
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Individual Legacy Inverter Description

▪ Group A (residential R-DER)
– P = 15kW

– S = 15kVA

– Under voltage trip = 0.88pu for 0.1s

▪ Group B (commercial R-DER)
– P = 35kW

– S = 35kVA

– Under voltage trip = 0.5pu for 0.1s

▪ Both are 3-phase, roughly based 
on IEEE 1547-2003
– Only legacy inverters in the present

analysis

http://www.epri.com/
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Translation to an Under Voltage Trip Characteristic

http://www.epri.com/
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Fitting these trip results to the DER_A trip characteristic

Voltage sags Voltage swells

But is this the only type 
of variation possible?

http://www.epri.com/
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When considering combinations of 3 – φ DER, 1 – φ DER, balanced load, 

unbalanced load

▪ While the trend is the same for 
all combinations, the spread is 
different
– Both vertical spread and horizontal

▪ But, there are some values of 
ride-through ratio that have a 
higher probability of occurrence 
than other values.

▪ These values must be used for 
the parameterization of the 
DER_A trip characteristic 

Reference: 

Detailed Distribution Circuit Analysis and Parameterization of the 

Partial Voltage Trip Logic in WECC’s DER Model (DER_A): Towards 

Regional Default Settings in the Absence of Detailed Distribution 

Circuit Data. EPRI, Palo Alto, CA: 2018. 3002013500 (Online)

http://www.epri.com/
https://www.epri.com/#/pages/product/000000003002013500/?lang=en-US
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Would a transmission planner see the same behavior from the aggregate model?

http://www.epri.com/
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Results from analysis of two separate feeders

Reference: 

Detailed Distribution Circuit Analysis and Parameterization of the Partial Voltage Trip Logic in WECC’s DER Model (DER_A): Towards 

Regional Default Settings in the Absence of Detailed Distribution Circuit Data. EPRI, Palo Alto, CA: 2018. 3002013500 (Online)

IEEE 8500 Node Feeder Southern California feeder

http://www.epri.com/
https://www.epri.com/#/pages/product/000000003002013500/?lang=en-US
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Concept behind generalization for widespread application

▪ The first inverter to trip on the feeder is likely located towards the tail.

▪ The last inverter to trip is likely located towards the head.

▪ The first inverter would trip when the tail of the feeder has a voltage below the individual inverter trip 
threshold (0.88pu in our case)

▪ The last inverter would trip when the head of the feeder has a voltage below the individual inverter trip 
threshold. (0.88pu in our case)

▪ Assuming DER_A bus represents the tail of the feeder (at present, this is a big assumption!).

▪ Assuming a net downward trend in voltage profile across the feeder (even with regulators and capacitor 
banks):

– vl1 in DER_A = 0.89pu (Indicates the start of tripping of the first inverter at the tail)

– vl0 in DER_A = 0.89 - 𝑣𝑓𝑒𝑒𝑑𝑒𝑟−𝑑𝑟𝑜𝑝 (indicates the end of tripping with the last inverter at the head)

– 𝑣𝑓𝑒𝑒𝑑𝑒𝑟−𝑑𝑟𝑜𝑝 is usually between 0.02pu – 0.08pu

http://www.epri.com/
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Parameter IEEE 1547-2003 Default 

vl0 0.89 - (Vsub0 – VtDER_A0)

OR

0.49 

vl1 0.89

OR

0.50 + (Vsub0 – VtDER_A0)

vh0 1.1 OR 1.2

vh1 1.1– (Vsub0 – VtDER_A0) 

OR

1.2 – (Vsub0 – VtDER_A0)

tvl0 (0.1-1.5) OR 0.16

tvl1 (0.1-1.5) OR 0.16

tvh0 (0.1-1.0) OR 0.16

tvh1 (0.1-1.0) OR 0.16

Vrfrac 0/(0-0.8)

▪ Option 1: 

– If all the DERs on the feeder have a trip threshold as 0.88pu

– vl1 = 0.89pu; vl0 = 0.89 - (Vsub0 – VtDER_A0); tvl0 = tvl1 = between 0.1s and 
1.5s. 

▪ Option 2: 

– If all the DERs on the feeder have a trip threshold of 0.5pu. 

– vl1 = 0.50 + (Vsub0 – VtDER_A0); vl0 = 0.49; tvl0 = tvl1 = 0.16s.

▪ Option 3: 

– If some DERs have a threshold of 0.88pu while others have a threshold of 
0.5pu,

– vl1 = 0.89; vl0 = 0.49pu; tvl0 = tvl1 = between (0.1s – 1.5s) and 0.16s 
respectively.

▪ Option 4 (invalid): 

– As vl1 should be greater than vl0.

There is a further complexity: If total amount of DER is around the feeder hosting capacity, then (Vsub0 – VtDER_A0) can be 

halved – This is still a heuristic and does not yet have a solid analytical/mathematical basis

• VtDER_A0 = power flow solution voltage at the DER_A terminal 

• If the load tap changer has a ratio other than 1.0, then 𝑉𝐿𝑇𝐶
should be used instead of Vsub0

Options for trip settings

http://www.epri.com/
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Can this be applied for bulk power system studies?

▪ In Duke Energy’s system, 490 MW existing DER modeled (1300 MW capacity)

▪ EPRI’s ADMI tool1 modeled aggregated DERs as U-DER at 138 locations

▪ Scaled DER and recommitted generation to create 750, 1250, 1760, 3050, and 3650 MW 
cases

▪ Evaluated bus faults + clearing

1Aggregate Distributed 
Energy Resource (DER) 
Model Integration 
(ADMI): Version 2.1 -
Beta, EPRI, Palo Alto, CA: 
2018, 3002014316 
(Online)

Thanks to Bill 
Quaintance and 
Anthony Williams from 
Duke Energy for 
tremendous support 
and guidance

http://www.epri.com/
https://www.epri.com/#/pages/product/000000003002014316/?lang=en-US
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Observations

▪ Increasing DER penetration tended to delay recovery
of pre-disturbance output
– Indicates slower voltage recovery

▪ Undervoltage trip setting selection impacts steady-state
frequency deviations
– Determines number of DERs which trip during disturbances

– No frequency problems observed, even with
pessimistic assumptions (0.88pu trip within 0.1 seconds)

▪ Slight benefit from using dynamic voltage 
support functions
– Doesn’t take into account chance of DER going into momentary cessation

▪ Slight benefit from using Q priority

▪ Network upgrades need to be considered
with high DER penetrations

Delayed 

Restart

Tripping affects 

frequency

http://www.epri.com/
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Observations (cont’d)

▪ Sensitivity to DER
penetration

– Tendency for decreased
voltage at loads after
fault clears (Fig. 1)

– Decreased voltage delays
resumption of pre-fault output (Fig. 2)

(assuming long UV trip delay)

▪ Sensitivity to UV trip delay

– Longer UV trip delay
reduced likelihood of
UV tripping (Fig. 3)

– Indirectly affects system
frequency deviation (Fig. 4)

Reduced 

Voltage 

at Loads

Delayed 

Restart

Tripping for 

short delay

Tripping effects 

frequency

(Fig. 1)

(Fig. 2)

(Fig. 3)

(Fig. 4)

http://www.epri.com/
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Observations (cont’d)

▪ Sensitivity to voltage support deadband

– Slight improvement in load
voltages for smaller deadband
settings (Fig. 1)

– Slightly quicker resumption of
pre-fault output for smaller
deadband settings (Fig. 2)

▪ Sensitivity to voltage
support gain

– Slight improvement in
load voltages for
higher gain settings (Fig. 3)

– Increasing gain
setting more effective
in Q priority (Fig. 4)

Slightly 

Higher 

Voltage

(Fig. 1)

(Fig. 2)

Slightly 

Delayed 

Restart

(Fig. 3) (Fig. 4)

P

Priority

Q

Priority

http://www.epri.com/
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Observations (cont’d)

▪ Sensitivity to current priority

– Slight improvement in load
voltages for Q priority (Fig. 1)

– DER penetration, distribution system
connection, constant PF control mode
all make Q priority less effective

▪ Impact on neighboring systems

– Voltage depression observed
in neighboring systems as well

– Assuming DER penetration suggests
how many MW of DER may be at risk
of tripping in neighboring areas (Fig. 2)

Slightly 

Higher 

Voltage

(Fig. 1)

(Fig. 2)

http://www.epri.com/
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Sensitivity to islanding of bulk system region…

▪ Generic representation of system split

▪ All load at DER buses modeled with composite load model.

▪ All DER modeled as U-DER with an equivalent load step down transformer and individual 
U-DER transformer.

▪ All U-DER are in a single area and modeled with DER_A

– Total Pgen of DER_A = 3087.45 MW

– Total Pmax of DER_A = 3087.45 MW

▪ Non DER in the same area

– Total Pgen = 8837.47 MW

– Total Pmax = 9544.30 MW

– Theoretical headroom = 706.83 MW

▪ Load in the area = 12691.94 MW/2872.52 Mvar

▪ Interchange of the area = 938 MW import.

http://www.epri.com/
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Premise of the simulations…

▪ DER_A main parameters:

– 𝑣𝑙1 = 0.93pu ; 𝑣𝑙0 = 0.89pu

– 𝑡𝑣𝑙1 = 2.0s ; t𝑣𝑙0 = 2.0s

– 𝑣ℎ1 = 1.05pu ; 𝑣ℎ0 = 1.20pu

– 𝑡𝑣ℎ1 = 2.0s ; 𝑡𝑣ℎ0 = 2.0s

– 𝑓𝑙𝑡𝑟𝑝 = 59.0 Hz ; 𝑓ℎ𝑡𝑟𝑝 = 61.0 Hz

– 𝑡𝑓𝑙 = 7.1s ; 𝑡𝑓ℎ = 7.1s

– Vrfrac = 0.0

▪ All tie lines connecting the area with the rest of the system are disconnected during the 
simulation.

– Results in a net deficit of 938 MW within the area as the imports are lost.

http://www.epri.com/
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Results…

• The DER_A model is robust 
even for low frequency 
events.

• No DER trips for this 
scenario as both voltage 
and frequency stay within 
the trip regions

Voltage measured at 
DER_A terminals

Frequency measured 
at DER_A terminals

Total active power of 
all DERs

http://www.epri.com/
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Results (cont’d)…

▪ Heavily loaded tie line is first faulted, and then area is islanded.

Voltage measured at 
DER_A terminals Total active power of 

all DERs

Total active power of 
all loads

• System is unstable, but 
numerically robust!

• Instability is due to trip of 
all DERs following the fault 
resulting in 3000MW of 
deficit in generation 
within the area

• Is this due to the presence 
of DER_A model, or 
violation of voltage 
stability limits?

http://www.epri.com/
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Results (cont’d)…

▪ All DERs represented by GENCLS rather than DER_A

– Large value of inertia, high damping factor, and X” = 1.5pu

– UV/OV protection set at 0.88pu/1.05pu with 2 second delay

Total active power of 
all loadsTotal active power of all 

DERs represented by 
GENCLS

• The system is again unstable because some of the DERs trip and from there, it cascades.

http://www.epri.com/
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Conclusions…

▪ Implementation of DER_A across all positive sequence simulation programs is consistent.

▪ It is possible to parameterize the DER_A model using detailed simulations

– The response in positive sequence matches well

– Parameters may be adjusted to model momentary cessation versus tripping

▪ Use of multiple instances of DER_A in a large system is numerically robust.

▪ Sensitivity studies have been carried out to observe the impact of various parameters of 
the model on the performance of a large system

▪ System instability can be observed if an area with large amounts of DER islands from the 
main system

– This instability is not necessarily due to the DER_A model, but more likely due to the generation 
load balance within the islanded area, and the parameterization of the DER_A model. 

– Or, if DER is actually parameterized to go into momentary cessation at voltage thresholds such as 
0.88pu

http://www.epri.com/
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Together…Shaping the Future of Electricity

http://www.epri.com/

