A. Introduction

- **1. Title:** System Performance Following Extreme Events Resulting in the Loss of Two or More Bulk Electric System Elements (Category D)
- **2. Number:** TPL-004-0(i)a
- **3. Purpose:** System simulations and associated assessments are needed periodically to ensure that reliable systems are developed that meet specified performance requirements, with sufficient lead time and continue to be modified or upgraded as necessary to meet present and future System needs.
- 4. Applicability:
 - **4.1.** Planning Authority
 - **4.2.** Transmission Planner
- **5. Effective Date:** See Implementation Plan for the Revised Definition of "Remedial Action Scheme"

B. Requirements

- **R1.** The Planning Authority and Transmission Planner shall each demonstrate through a valid assessment that its portion of the interconnected transmission system is evaluated for the risks and consequences of a number of each of the extreme contingencies that are listed under Category D of Table I. To be valid, the Planning Authority's and Transmission Planner's assessment shall:
 - **R1.1.** Be made annually.
 - **R1.2.** Be conducted for near-term (years one through five).
 - **R1.3.** Be supported by a current or past study and/or system simulation testing that addresses each of the following categories, showing system performance following Category D contingencies of Table I. The specific elements selected (from within each of the following categories) for inclusion in these studies and simulations shall be acceptable to the associated Regional Reliability Organization(s).
 - **R1.3.1.** Be performed and evaluated only for those Category D contingencies that would produce the more severe system results or impacts. The rationale for the contingencies selected for evaluation shall be available as supporting information. An explanation of why the remaining simulations would produce less severe system results shall be available as supporting information.
 - **R1.3.2.** Cover critical system conditions and study years as deemed appropriate by the responsible entity.
 - **R1.3.3.** Be conducted annually unless changes to system conditions do not warrant such analyses.
 - **R1.3.4.** Have all projected firm transfers modeled.
 - **R1.3.5.** Include existing and planned facilities.
 - **R1.3.6.** Include Reactive Power resources to ensure that adequate reactive resources are available to meet system performance.
 - **R1.3.7.** Include the effects of existing and planned protection systems, including any backup or redundant systems.

- **R1.3.8.** Include the effects of existing and planned control devices.
- **R1.3.9.** Include the planned (including maintenance) outage of any bulk electric equipment (including protection systems or their components) at those demand levels for which planned (including maintenance) outages are performed.
- **R1.4.** Consider all contingencies applicable to Category D.
- **R2.** The Planning Authority and Transmission Planner shall each document the results of its reliability assessments and shall annually provide the results to its entities' respective NERC Regional Reliability Organization(s), as required by the Regional Reliability Organization.

C. Measures

- **M1.** The Planning Authority and Transmission Planner shall have a valid assessment for its system responses as specified in Reliability Standard TPL-004-0(i)a_R1.
- **M2.** The Planning Authority and Transmission Planner shall provide evidence to its Compliance Monitor that it reported documentation of results of its reliability assessments per Reliability Standard TPL-004-0(i)a_R1.

D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Monitoring Responsibility

Compliance Monitor: Regional Reliability Organization.

Each Compliance Monitor shall report compliance and violations to NERC via the NERC Compliance Reporting Process.

1.2. Compliance Monitoring Period and Reset Timeframe

Annually.

1.3. Data Retention

None specified.

1.4. Additional Compliance Information

None.

2. Levels of Non-Compliance

- **2.1. Level 1:** A valid assessment, as defined above, for the near-term planning horizon is not available.
- **2.2.** Level 2: Not applicable.
- **2.3.** Level 3: Not applicable.
- **2.4.** Level 4: Not applicable.

E. Regional Differences

1. None identified.

Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New

Standard TPL-004-0(i)a — System Performance Following Extreme BES Events

0a	February 7, 2013	Interpretation adopted by NERC Board of Trustees	
0a	June 20, 2013	Interpretation approved in FERC order	
0(i)a	November 13, 2014	Adopted by the NERC Board of Trustees	Replaced references to Special Protection System and SPS with Remedial Action Scheme and RAS
0(i)a	November 19, 2015	FERC Order issued approving TPL-004-0 (i)a. Docket No. RM15-13-000.	

Table I. Transmission System Standards – Normal and Emergency Conditions

Category	Contingencies	Sys	tem Limits or Impa	acts
Category	Initiating Event(s) and Contingency Element(s)	System Stable and both Thermal and Voltage Limits within Applicable Rating a	Loss of Demand or Curtailed Firm Transfers	Cascading Outages
A No Contingencies	All Facilities in Service	Yes	No	No
B Event resulting in the loss of a single element.	Single Line Ground (SLG) or 3-Phase (3Ø) Fault, with Normal Clearing: 1. Generator 2. Transmission Circuit 3. Transformer Loss of an Element without a Fault. Single Pole Block, Normal Clearing ^e :	Yes Yes Yes Yes	No ^b No ^b No ^b No ^b	No No No No
	4. Single Pole (dc) Line	Yes	$\mathrm{No^b}$	No
C Event(s) resulting in the loss of two or more (multiple) elements.	SLG Fault, with Normal Clearing ^e : 1. Bus Section	Yes	Planned/ Controlled ^c	No
	2. Breaker (failure or internal Fault)	Yes	Planned/ Controlled ^c	No
	SLG or 3Ø Fault, with Normal Clearing ^e , Manual System Adjustments, followed by another SLG or 3Ø Fault, with Normal Clearing ^e : 3. Category B (B1, B2, B3, or B4) contingency, manual system adjustments, followed by another Category B (B1, B2, B3, or B4) contingency	Yes	Planned/ Controlled ^c	No
	Bipolar Block, with Normal Clearing ^e : 4. Bipolar (dc) Line Fault (non 3Ø), with Normal Clearing ^e :	Yes	Planned/ Controlled ^c	No
	 Any two circuits of a multiple circuit towerline^f 	Yes	Planned/ Controlled ^c	No
	SLG Fault, with Delayed Clearing ^e (stuck breaker or protection system failure): 6. Generator	Yes	Planned/ Controlled ^c	No
	7. Transformer	Yes	Planned/ Controlled ^c	No
	8. Transmission Circuit	Yes	Planned/ Controlled ^c	No
	9. Bus Section	Yes	Planned/ Controlled ^c	No

Standard TPL-004-0(i)a — System Performance Following Extreme BES Events

D d Extreme event resulting in two or more (multiple)	3Ø Fault, with Delayed Clearing ^e (stuck breaker or protection system failure): 1. Generator 3. Transformer	Evaluate for risks and consequences. May involve substantial loss of customer Demand and
elements removed or Cascading out of service	Transmission Circuit 4. Bus Section	generation in a widespread area or areas. Portions or all of the
	3Ø Fault, with Normal Clearing^e:5. Breaker (failure or internal Fault)	or may not achieve a new, stable operating point. Evaluation of these events may
	6. Loss of towerline with three or more circuits7. All transmission lines on a common right-of way	require joint studies with neighboring systems.
	8. Loss of a substation (one voltage level plus transformers) 9. Loss of a switching station (one voltage level plus transformers)	
	10. Loss of all generating units at a station11. Loss of a large Load or major Load center	
	Failure of a fully redundant Remedial Action Scheme to operate when required	
	13. Operation, partial operation, or misoperation of a fully redundant Remedial Action Scheme in response to an event or abnormal system condition for which it was not intended to operate	
	 Impact of severe power swings or oscillations from Disturbances in another Regional Reliability Organization. 	

- a) Applicable rating refers to the applicable Normal and Emergency facility thermal Rating or System Voltage Limit as determined and consistently applied by the system or facility owner. Applicable Ratings may include Emergency Ratings applicable for short durations as required to permit operating steps necessary to maintain system control. All Ratings must be established consistent with applicable NERC Reliability Standards addressing Facility Ratings.
- b) Planned or controlled interruption of electric supply to radial customers or some local network customers, connected to or supplied by the Faulted element or by the affected area, may occur in certain areas without impacting the overall reliability of the interconnected transmission systems. To prepare for the next contingency, system adjustments are permitted, including curtailments of contracted Firm (non-recallable reserved) electric power Transfers.
- c) Depending on system design and expected system impacts, the controlled interruption of electric supply to customers (load shedding), the planned removal from service of certain generators, and/or the curtailment of contracted Firm (non-recallable reserved) electric power Transfers may be necessary to maintain the overall reliability of the interconnected transmission systems.
- d) A number of extreme contingencies that are listed under Category D and judged to be critical by the transmission planning entity(ies) will be selected for evaluation. It is not expected that all possible facility outages under each listed contingency of Category D will be evaluated.
- e) Normal clearing is when the protection system operates as designed and the Fault is cleared in the time normally expected with proper functioning of the installed protection systems. Delayed clearing of a Fault is due to failure of any protection system component such as a relay, circuit breaker, or current transformer, and not because of an intentional design delay.
- f) System assessments may exclude these events where multiple circuit towers are used over short distances (e.g., station entrance, river crossings) in accordance with Regional exemption criteria.

Appendix 1

Interpretation 2012-INT-02: Response to Request for Interpretation of TPL-003-0a, Requirements R1.3.1, R1.3.10 and R1.5 and TPL-004-0, Requirements R1.3.1, R1.3.7 and R1.4 for the System Protection and Control Subcommittee

Date submitted:	December 12	2011
Date submitted.	December 12	, 2011

The following interpretations of TPL-003-0a, System Performance Following Loss of Two or More Bulk Electric System Elements (Category C), Requirements R1.3.1, R1.3.10 and R1.5 and TPL-004-0, System Performance Following Extreme Events Resulting in the Loss of Two or More Bulk Electric System Elements (Category D), Requirements R1.3.1, R1.37 and R1.4 were developed by members of the Assess Transmission Future Needs Standard Drafting Team (ATFNSTD), Protection System Misoperations Standard Development Team (PSMSDT), and Protection System Maintenance and Testing Standard Drafting Team (PSMTSDT).

Standard	Requirement (and text)	
TPL-003-0a	R1.3.1 Be performed and evaluated only for those Category C contingencies that would produce the more severe system results or impacts. The rationale for the contingencies selected for evaluation shall be available as supporting information. An explanation of why the remaining simulations would produce less severe system results shall be available as supporting information.	
TPL-003-0a	R1.3.10. Include the effects of existing and planned protection systems, including any backup or redundant systems.	
TPL-003-0a	R1.5. Consider all contingencies applicable to Category C.	
TPL-004-0	R1.3.1. Be performed and evaluated only for those Category D contingencies that would produce the more severe system results or impacts. The rationale for the contingencies selected for evaluation shall be available as supporting information. An explanation of why the remaining simulations would produce less severe system results shall be available as supporting information.	
TPL-004-0	R1.3.7. Include the effects of existing and planned protection systems, including any backup or redundant systems.	
TPL-004-0	R1.4. Consider all contingencies applicable to Category D.	

Please explain the clarification needed (as submitted).

This interpretation request has been developed to address Commission concerns related to the term "Single Point of Failure" and how it relates to system performance and contingency planning clarification regarding the following questions about the listed standards, requirements and terms.

More specifically, clarification is needed about the comprehensive study of system performance relating to Table 1's, Category C and D contingency of a "protection system failure" and specifically the impact of failed components (i.e., "Single Point of Failure"). It is not entirely clear whether a valid assessment of a protection system failure includes evaluation of shared or non-redundant protection system components. Protection systems that have a shared protection system component are not two independent protection systems, because both protection systems will be mutually impacted for a failure of a single shared component. A protection system component evaluation would include the evaluation of the consequences on system performance for the failure of any protection system component that is integral to the operation of the protection system being evaluated and to the operation of another protection system.

On March 30, 2009, NERC issued an <u>Industry Advisory — Protection System Single Point of Failure</u>¹ (i.e., NERC Alert) for three significant events. One of which, the Westwing outage (June 14, 2004) was caused by failure of a single auxiliary relay that initiated both breaker tripping and the breaker failure protection. Since breaker tripping and breaker failure protection both shared the same auxiliary relay, there was no independence between breaker tripping and breaker failure protection systems, therefore causing both protection systems to not operate for the single component failure of the auxiliary relay. The failure of this auxiliary relay is known as a "single point of failure." It is not clear whether this situation is comprehensively addressed by the applicable entities when making a valid assessment of system performance for both Category C and D contingencies.

Question 1: For the parenthetical "(stuck breaker or protection system failure)" in TPL-003-0a (Category C contingencies 6-9) and TPL-004-0 (Category D contingencies 1-4), does an entity have the option of evaluating the effects² of either "stuck breaker" or "protection system failure" contingency³, or does an applicable entity have to evaluate the contingency that produces the more severe system results or impacts as identified in R1.3.1 of both standards?

There is a lack of clarity whether R1.3.1⁴ requires an entity to assess which contingency causes the most severe system results or impacts (R1.3.1) and this ambiguity could result in a potential reliability gap. Whether the simulation of a stuck breaker or protection system failure will produce the worst result depends on the protection system design. For example when a protection system is fully redundant, a protection system failure will not affect fault clearing; therefore, a stuck breaker would result in more severe system results or impacts. However, when a protection system failure affects fault clearing, the fault clearing time may be longer than the breaker failure protection clearing time for a stuck breaker contingency and may result in tripping of additional system elements, resulting in a more severe system response.

¹ NERC Website: (http://www.nerc.com/fileUploads/File/Events%20Analysis/A-2009-03-30-01.pdf)

² As required by NERC Reliability Standard TPL-003-0a, Requirement R1.3.10. and/or TPL-004-0, Requirement R1.3.7.

³ As required by NERC Reliability Standard TPL-003-0a, Requirement R1.5. and/or TPL-004-0, Requirement R1.4.

⁴ "Be performed and evaluated only for those Category (TPL-003-0a Category C and TPL-004-0 Category D) contingencies that would produce the more severe system results or impacts."

Question 2: For the phrase "Delayed Clearing⁵" used in Category C⁶ contingencies 6-9 and Category D⁷ contingencies 1-4, to what extent does the description in Table 1, footnote (e)⁸ require an entity to model a single point of failure of a protection system component that may prevent correct operation of a protection system, including other protection systems impacted by that failed component based on the as-built design of that protection system?

There is a lack of clarity whether footnote (e) in Table 1 requires the study and/or simulation of a failure of a protection system component (i.e., single point of failure) that may prevent correct operation of the protection system(s) impacted by the component failure. Protection systems that share a protection system component are fully dependent upon the correct operation of that single shared component and do not perform as two independent protection systems. This lack of clarity may result in a potential reliability gap.

Clarity is necessary as to whether (1) a valid assessment should include evaluation of delayed clearing due to failure of the protection system component (i.e., single point of failure), such as the failure of a shared protection system component, that produces the more severe system results or impacts; and (2) the study and/or simulation of the fault clearing sequence and protection system(s) operation should be based on the protection system(s) as-built design.

The lack of clarity is compounded by the similarity between the phrase "Delayed Clearing" used in TPL-003-0a and TPL-004-0, footnote (e), and the NERC glossary term "Delayed Fault Clearing." While TPL-003-0a and TPL-004-0 do not use the glossary term, the similarity may lead to confusion and inconsistency in how entities apply footnote (e) to "stuck breaker" or "protection system failure" contingency assessments.

Question 1

For the parenthetical "(stuck breaker or protection system failure)" in TPL-003-0a (Category C contingencies 6-9) and TPL-004-0 (Category D contingencies 1-4), does an entity have the option of evaluating the effects⁹ of either "stuck breaker" or "protection system failure" contingency¹⁰, or does an applicable entity have to evaluate the contingency that produces the more severe system results or impacts as identified in R1.3.1 of both standards?

Response 1

⁵ As required by NERC Reliability Standard TPL-003-0a, Requirement R1.5. and/or TPL-004-0, Requirement R1.4.

⁶ As required by NERC Reliability Standard TPL-003-0a, Requirement R1.5.

⁷ As required by NERC Reliability Standard TPL-004-0, Requirement R1.4.

⁸ Footnote (e) Delayed Clearing: "failure of any protection system component such as a relay, circuit breaker, or current transformer, and not because of an intentional design delay,"

⁹ As required by NERC Reliability Standard TPL-003-0a, Requirement R1.3.10. and/or TPL-004-0, Requirement R1.3.7.

¹⁰ As required by NERC Reliability Standard TPL-003-0a, Requirement R1.5. and/or TPL-004-0, Requirement R1.4.

The interpretation drafting team concludes that the Planning Authority and Transmission Planner must evaluate the situation that produces the more severe system results or impacts (i.e., TPL-003-0a, R1.3.1 and TPL-004-0, R1.3.1) due to a delayed clearing condition regardless of whether the condition resulted from a stuck breaker or protection system failure. The Reliability Standards TPL-003-0a (Table I, Category C contingencies 6-9) and TPL-004-0 (Table I, Category D contingencies 1-4) involve an assessment of the effects of either a stuck breaker or a protection system failure. The single line ground (SLG) (TPL-003-0a, Table I, Category C) Fault and 3-phase (3ø) (TPL-004-0, Table I, Category D) Fault contingencies with delayed clearing are further defined by footnote (e) and the parenthetical phrase "(stuck breaker or protection system failure)." Footnote (e) explains that "Delayed clearing of a Fault is due to failure of any protection system component such as a relay, circuit breaker, or current transformer, and not because of an intentional design delay." The parenthetical further emphasizes that the failure may be a "stuck breaker or protection system failure" that causes the delayed clearing of the fault. The text in Table 1 in either standard explains that when selecting delayed clearing contingencies to evaluate, both conditions "(stuck breaker or protection system failure)" must be considered.

Question 2

For the phrase "Delayed Clearing¹¹" used in Category C¹² contingencies 6-9 and Category D¹³ contingencies 1-4, to what extent does the description in Table 1, footnote (e)¹⁴ require an entity to model a single point of failure of a protection system component that may prevent correct operation of a protection system, including other protection systems impacted by that failed component based on the as-built design of that protection system?

Response 2

The term "Delayed Clearing" that is described in Table I, footnote (e) refers to fault clearing that results from a failure to achieve the protection system's normally expected clearing time. For Category C or D contingencies, each Planning Authority and Transmission Planner is permitted engineering judgment in its selection of the protection system component failures for evaluation that would produce the more severe system results or impact (i.e., TPL-003-0a, R1.3.1 and TPL-004-0, R1.3.1). The evaluation would include addressing all protection systems affected by the selected component.

A protection system component failure that impacts one or more protection systems and increases the total fault clearing time requires the Planning Authority and Transmission Planner to simulate the full impact (clearing time and facilities removed) on the Bulk Electric System performance.

¹¹ As required by NERC Reliability Standard TPL-003-0a, Requirement R1.5. and/or TPL-004-0, Requirement R1.4.

¹² As required by NERC Reliability Standard TPL-003-0a, Requirement R1.5.

¹³ As required by NERC Reliability Standard TPL-004-0, Requirement R1.4.

¹⁴ Footnote (e) Delayed Clearing: "failure of any protection system component such as a relay, circuit breaker, or current transformer, and not because of an intentional design delay,"

Standard TPL-004-0(i)a — System Performance Following Extreme BES Events

The interpretation drafting team bases this conclusion on the footnote (e) example "...any protection system component such as, relay, circuit breaker, or current transformer..." because the component "circuit breaker" is not addressed in the current or previously defined NERC glossary term. The interpretation drafting team initially believed the lowercase usage of "protection system" inferred the NERC glossary term and the components described therein; however, based on the interpretation drafting team's further assessment of footnote (e), it concludes that the existing TPL standards (TPL-003-0a and TPL-004-0) do not implicitly use the NERC glossary term. Without an explicit reference to the NERC glossary term, "Protection System," the two standards do not prescribe the specific protection system components that must be addressed by the Planning Authority and Transmission Planner in performing the studies required in TPL-003-0a and TPL-004-0.